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SPECTRAL METHODS FOR THE SIMULATION OF
INCOMPRESSIBLE FLOWS IN SPHERICAL SHELLS

A. TILGNER*
Institute of Physics, Uni6ersity of Bayreuth, 95440 Bayreuth, Germany

SUMMARY

A spatial discretization of the incompressible Navier–Stokes equation is presented in which the velocity
is decomposed using poloidal and toroidal scalars whose spatial dependence is given in terms of spherical
harmonics and Chebychev polynomials. The radial resolution needs to be large enough at any given
angular resolution in order to avoid instability in the simulation of rotating flows. Several semi-implicit
time steps are discussed. The most accurate scheme is an integrating factor technique. Copyright © 1999
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Flow problems in spherical geometry are of central importance for geo- and astrophysics.
Attention has mostly focused on convection in stars, planetary atmospheres and the earth’s
mantle. The generation of the earth’s magnetic field by fluid motion in the earth’s core has also
been greatly studied recently. In most problems of interest rotation plays a major role and the
appropriate geometry is that of a spherical shell rather than a full sphere.

The solver presented here uses spectral decompositions. Spectral methods [1] provide high
precision when dealing with stability or transition problems and generally require fewer grid
points at equal accuracy compared with local methods. In addition, the basis functions may be
good approximations to the actual solution so that a relatively small number of modes can be
enough for accurate computation. The savings compared with a local grid method are
particularly striking in the case of precession-driven flows discussed below. In spherical
geometry, spherical harmonics are usually chosen to discretize the angular variables. This
system of functions automatically handles a co-ordinate singularity and avoids the crowding of
grid points near the poles, which plagues straightforward finite difference discretization, thus
permitting larger time steps in time integrations [2]. The use of spherical harmonics also greatly
simplifies the treatment of non-local boundary conditions that arise at a spherical conductor–
vacuum interface in magneto-hydrodynamic problems.

One of the first complete descriptions of a spectral code using spherical harmonics was given
by Young [3]. The radial direction was treated with a Green’s function method implicitly
assuming a finite difference discretization in radius. The method simulates convection in the
framework of the Boussinesq approximation. Glatzmaier [4] later presented a method to solve
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for compressible convection flows within the anelastic approximation. Radial discretization
was performed with a Chebychev collocation method and the computation of the non-linear
terms was improved. Both authors used a poloidal–toroidal decomposition [5] for solenoidal
vector fields. More recently, a different formal approach to spatial discretization utilizing
vector spherical harmonics has been described by Dumas and Leonard [6].

The present paper reports on a spectral code using poloidal–toroidal decompositions for
incompressible flows. Special attention is paid to the case of fast rotation. Experience has been
gathered by applying the method to convection [7,8], the kinematic [9] and full dynamo
problems and precession driven flows [10]. This last problem is conceptually the simplest but
turned out to be computationally the most demanding. In order to keep formulas short yet
readily extendible to other problems, the actual discretizations will be given for the precession
problem only. The main emphasis of the paper is on accurate time stepping methods.

Section 2 presents the spatial discretization with a special discussion of the Coriolis term.
Section 3 deals with time stepping methods. Usual semi-implicit time steps are compared with
the integrating factor technique. Section 4 shows sample runs and conclusions.

2. SPATIAL DISCRETIZATION

Consider an incompressible fluid of density r and kinematic viscosity n in a spherical shell of
gap width d, rotating with angular frequency v about the z-axis. Units of length and time are
chosen as d and 1/v respectively. If the shell furthermore executes precessional motion
characterized by the precession vector vV, the non-dimensional equations for the velocity
u(r, t) read in a frame of reference attached to the precessing casing [11,12]:

(

(t
u+ (9×u)×u+2(ẑ+V)×u= −9f+E92u− (V× ẑ)×r, (1)

9 ·u=0. (2)

Hats denote unit vectors. The Ekman number E is given by E=n/d2v. f stands for a reduced
pressure that is immaterial in the sequel because only the curl of (1) will be used. The
precession axis V. forms the angle a (0BaBp/2) with the z-axis and is time-dependent in the
chosen system of reference:

V. =sin a cos t x̂−sin a sin t ŷ+cos a ẑ. (3)

The boundary conditions require that u=0 at r=ri, ro, where ri and ro denote the inner and
outer radii of the shell. Due to the choice of units, ro−ri=1.

The solenoidal velocity field can be written in terms of poloidal and toroidal scalars F and
C:

u=9×9× (Fr̂)+9× (Cr̂), (4)

which are themselves decomposed into radial and angular parts:

F=r %
�

l=1

%
l

m= − l

Vl
m(r, t)Pl

m(cos u) eim8, C=r2 %
�

l=1

%
l

m= − l

Wl
m(r, t)Pl

m(cos u) eim8, (5)

in spherical polars (r, u, 8). Pl
m(cos u) denotes the associated Legendre functions. The factors

r and r2 in (5) are not essential but convenient because they reduce the variation of Vl
m and

Wl
m with r in most problems. Operating with r̂ ·9× and r̂ ·9×9× on (1) one obtains:
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(

(t
DlVl

m−E ·Dl
2Vl

m=
r

l(l+1)
[r̂ ·9×9×{V %×u}]lm, (6a)

(

(t
Wl

m−E
� (2

(r2+
4
r
(

(r
+

2− l(l+1)
r2

�
Wl

m= −
1

l(l+1)
[r̂ ·9×{V %×u}]lm+ [ f ]lm, (6b)

with

V %=9×u+2(ẑ+V), Dl=
(2

(r2+
2
r
(

(r
−

l(l+1)
r2

and

f=V sin a [iP1
1 ei(8+ t)+2iP1

−1 e− i(8+ t)], V=VV. .

[ ]lm denotes the l,m-component of the quantity in the square bracket. These equations need to
be solved subject to the boundary conditions

Vl
m=
(Vl

m

(r
=Wl

m=0 at r=ri, ro. (7)

Because F and C are real, Vl
m*=Vl

−m and Wl
m*=Wl

−m, so that only components with
m]0 need to be stored. Equations (6a) and (6b) are solved with a Chebychev collocation
method. The sums in (5) are truncated at L to include only terms with l5L and the functions
Vl

m and Wl
m are expanded in nr Chebychev polynomials Tn as

Vl
m(r, t)= %

nr−1

n=0

6 l,n
m (t)Tn(x), Wl

m(r, t)= %
nr−1

n=0

wl,n
m (t)Tn(x), (8)

with x=2(r−ri)−1. The collocation points are placed in direct space at rn+ri+1/2{1+
cos[p(n−1)/(nr−1)]}, with n=1, . . . , nr, so that a fast cosine transform can be used to switch
between physical and spectral space. Equations (6) are enforced at every collocation point and
the spectral representation in radius is merely used to compute derivatives.

It is very convenient to introduce a radial stretching function at this stage if one wishes to
concentrate collocation points in specific regions, e.g. the boundaries. This can be accom-
plished by leaving the collocation points in x space at xn=cos[p(n−1)/(nr−1)], so that fast
cosine transforms can still be used, but by changing the x-dependence of r. In order to crowd
grid points near the boundaries, a useful class of stretching functions is

r=ri+
1
2
�sin(bpx/2)

sin(bp/2)
+1

�
, 0BbB1. (9)

The restriction on b ensures invertibility of r(x). b=0 recovers the traditional Chebychev
collocation points. Very few changes need to be made in the code to incorporate a radial
stretching function: The definition of the collocation points is of course modified and the r(x)
relationship also enters the computation of derivatives, e.g.

(

(r
Vl

m(r, t)= %
nr−1

n=0

6 l,n
m (t)

d
dx

Tn(x)
dx
dr

,

where the derivatives of Tn(x) are computed with recurrence relations.
Evaluation of the right-hand-sides of Equations (6a) and (6b) requires the calculation of

the radial component of the curl and the radial component of the curl of the curl of a
vector S=Srr̂+Suu. +S88̂. The auxiliary quantities Pr=Sr, Pu=Su/(r sin u)−1 and P8=
S8/(r sin u)−1 are computed in direct space and then transformed into r,l,m-space. The desired
derivatives are now easily obtained:
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[r̂ ·9×S ]lm= (l+1)
l−m
2l−1

[P8 ]l−1
m − l

l+m+1
2l+3

[P8 ]l+1
m − im [Pu ]lm, (10a)

[r̂ ·9×9×S ]lm= l(l+1)[Pr ]lm

+
1
r2

d
dr

�
r2!(l+1)

l−m
2l−1

[Pu ]l−1
m − l

l+m+1
2l+3

[Pu ]l+1
m + im [P8 ]lm

"�
.

(10b)

The computation of the radial derivative in (10b) requires a transform into Chebychev space
and back. Due to different normalizations in the basis functions, the coefficients in (10a) and
(10b) are simpler than those in the equivalent formulas of Reference [4]. Note that when
evaluating (10a) and (10b) at the highest order L retained in the truncation, severe errors may
occur because the components of S at order L+1 are not known. In the final version of the
code, [r̂ ·9×S ]Lm and [r̂ ·9×9×S ]Lm were set to zero. The method then became more stable,
though not more accurate.

As indicated in (6), the Coriolis force is most conveniently included in the non-linear terms.
However, when dealing with linearized equations it is better to compute the Coriolis term
directly in order to avoid the time consuming steps required for the calculation of the
non-linear terms. The relevant formulas are:

−
2

l(l+1)
[r̂ ·9× (ẑ×u ]lm

=
2

l(l+1)
1
r2

!l(l+1)(l+2)(l+m+1)
2l+3

Vl+1
m +

l(l+2)(l+m+1)
2l+3

�
Vl+1

m +r
(Vl+1

m

(r
�

−
(l+1)l(l−1)(l−m)

2l−1
Vl−1

m +
(l+1)(l−1)(l−m)

2l−1
�

Vl−1
m +r

(Vl−1
m

(r
�

+ im r2Wl
m",

(11a)

2r
l(l+1)

[r̂ ·9×9× (ẑ×u ]lm=
2

l(l+1)

×
!

−
l(l+1)(l+2)(l+m+1)

2l+3
Wl+1

m −
l(l+2)(l+m+1)

2l+3
�

2Wl+1
m +r

(Wl+1
m

(r
�

+
(l+1)l(l−1)(l−m)

2l−1
Wl−1

m −
(l+1)(l−1)(l−m)

2l−1
�

2Wl−1
m +r

(Wl−1
m

(r
�

+ im DlVl
m".

(11b)

When writing a new code it is a rewarding consistency check to verify that the same results can
be obtained with Equations (10a) and (10b) and (11a) and (11b).

Geo- and astrophysical applications are frequently interested in rapidly rotating systems. In
the limit of fast rotation (E�0) the dissipative term drops from (1) and the kinetic energy of
the flow is conserved, ((/(t) 	 u2 dV=0. The question arises as to whether the truncated
system will also conserve energy. It is well-known [1] that if the basis functions of a Galerkin
spectral method are mutually orthogonal in the scalar product, which also occurs in the
conservation law, the numerical method will exactly obey the same conservation law. The
angular variables are indeed discretized with a Galerkin method, but the radial direction is not.
Since the Tn are orthogonal to each other in a scalar product defined with the weight
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(1−x2)−1/2, it appears difficult to find a strictly energy conserving method based on
Chebychev polynomials. In the present formulation the quality of energy conservation is thus
expected to depend on radial resolution. To investigate the issue, the normal mode problem
has been considered [12]:

pu+2ẑ×u= −9f, 9 ·u=0, r̂ ·u=0 at r=ri, ro. (12)

The eigenvalues p are purely imaginary. The imaginary parts Im{p} correspond to the
frequencies of the inertial modes u and lie in the interval [−2, 2]. Equation (12) is reformu-
lated in terms of poloidal and toroidal scalars:

p
�DlVl

m

Wl
m

�
=Ã

Ã

Ã

Á

Ä

2r
l(l+1)

[r̂ ·9×9×{ẑ×u}]lm

−
2r

l(l+1)
[r̂ ·9×{ẑ×u}]lm

Ã
Ã

Ã

Â

Å

. (13)

The right-hand-side couples in l but decouples in m (see (11a) and (11b)). After discretization,
the dynamic equations for Vl

m at the inner and outer most points are replaced with the
boundary conditions Vl

m=0 at r=ri, ro (see the next section for a more detailed description of
the handling of boundary conditions). The resulting matrix eigenvalue problem has been
solved directly with a QR routine. Numerical approximations for p obtained in this manner
had in general non-zero real parts. Eigenvalues occurred of course in complex conjugate pairs
and real parts were distributed symmetrically with respect to Re{p}=0. Eigenvalues with
positive real part potentially lead to instability of any time stepping scheme even at E different
from zero. Table I, therefore, lists the eigenvalue with the largest real part for different
resolutions. The numerical results corroborate the theoretical expectation. In order to reduce
Re{p} to insignificant levels, the radial resolution needs to be large enough, and it needs to be
the larger the more spherical harmonics are retained. Eigenvalues with Re{p}\0 always exist
so that the spatial discretization described here will only allow stable time integration for
E"0. However, for any E"0, the maximum of Re{p} can be reduced to harmless levels by
increasing the radial resolution.

Table I. Eigenvalues p with the largest real part for m=1, ri/ro=0.35 com-
puted at different resolutions nr, L with the Eispack routines ‘balance’, ‘elmhes’

and ‘hqr’

nr L p

5 2 10−16+i · 1
8 6.050×10−2+i · 0.1345

9 4 9.351×10−9+i · 0.820
6 3.024×10−3+i · 1.3929

7.807×10−3+i · 1.02389
16 7.081×10−2+i · 0.6719

7 8 1.263×10−8+i · 0.400
17 10 3.978×10−8+i · 0.282

4.950×10−4+i · 1.5341217
17 16 3.995×10−3+i · 0.237
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3. TEMPORAL DISCRETIZATION

In order to avoid stringent CFL restrictions, the diffusion term is treated implicitly. This is
feasible because the Laplacian decouples in l, m and the poloidal and toroidal scalars, resulting
in systems of linear equations of manageable size. All other terms (the right-hand-sides of (6))
need to be integrated explicitly. Adams–Bashforth schemes of second- and third-order have
been used for the explicit part. A Euler step is employed for starting up a run. Three choices
for the implicit step are discussed below: Crank–Nicolson, implicit Euler and an integrating
factor technique.

At the beginning of each time step all fields and their first- and second-radial derivatives are
given in r,l,m-space. u and 9×u are calculated from the poloidal and toroidal fields,
transformed into r, u, 8 space where the non-linear terms are evaluated, which are then
transformed back into r,l,m-space to yield the right-hand-sides of (6). Dealiasing in the angular
variables can be performed during this last transformation. As can be deduced from [3],
dealiasing is possible with the standard 3/2 rule in both u- and 8-directions. The azimuthal
co-ordinate is transformed with an FFT. The l to u transform requires adding associated
Legendre functions and the inverse transform consists in a Gauss quadrature. Both operations
are expressed as matrix multiplications with matrices precomputed during initialization.

During the implicit time step a set of nr linear equations needs to be solved for every pair
l, m. The coefficients in these equations are independent of m. Let us first consider the
equation for the toroidal scalar (6b). The discretized equations are formulated such that the
updated toroidal field is obtained in n,l,m-space, where the radial derivatives required for the
next time step can be conveniently computed. For an implicit Euler time step of size h, the
coefficient matrices C l are constructed such that

%
nr

j=1

Cn, j
l w l, j

m = %
nr

j=1

wl, j
m �Tj−1(xn)−hE

� (2

(r2+
4
r
(

(r
+

2− l(l+1)
r2

�
Tj−1(xn)

n
n=2, . . . , nr−1, l=1, . . . , L. (14)

For a Crank–Nicolson step, h is replaced by h/2. In practice, the matrix elements of C l are
computed by looping the vector (wl,1

m , . . . , wl,nr

m )T through all unit vectors and computing each
time the right-hand-side of (14) with derivative routines that are necessary for the main
program anyway. This allows filling C l column by column. Boundary conditions are enforced
by using the equations corresponding to the boundary points:

C1, j
l =1, Cnr, j

l = (−1)j−1, j=1, . . . , nr, l=1, . . . , L. (15)

Note that the xn are indexed such that x1=1 and xnr
= −1. The C l are computed and inverted

during initialization. If w l
m denotes the nr-dimensional vectors containing the elements wl,n

m ,
n=1, . . . , nr, W l

m(t) the vectors containing Wl
m(rn, t), n=1, . . . , nr, and N l

m the nr-dimen-
sional vectors containing the right-hand-sides of (6b) evaluated at the collocation points,
modified such that Nl,1

m =Nl,nr

m =0, then the solution of

C lw l
m(t+h)=W l

m(t)+
h
2

(3N l
m(t)−N l

m(t−h)), l=1, . . . , L (16)

yields the toroidal scalar at time t+h in terms of quantities known from previous time steps
using second-order Adams–Bashforth for the explicit part. In a Crank–Nicolson step, the
vector containing
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h
2

E
� (2

(r2+
4
r
(

(r
+

2− l(l+1)
r2

�
Wl

m(rn, t)

evaluated at the inner collocation points and set to zero at the boundaries needs to be added
to the right-hand-side.

The poloidal equation (6a) is more complicated in that it is fourth-order and involves two
boundary conditions at each boundary. A straightforward extension of the above method
takes these extra boundary conditions into account by sacrificing the dynamic equations at two
more collocation points, typically those next to the boundaries. The poloidal time step is then
the direct analog of (16) with the C l replaced with matrices C %l defined by

%
nr

j=1

C %n, j
l 6 l, j

m = %
nr

j=1

6 l, j
m [DlTj−1(xn)−hEDl

2Tj−1(xn)], n=3, . . . , nr−2, l=1, . . . , L,

(17a)

C %1, j
l =1, C %nr, j

l = (−1)j−1, j=1, . . . , nr, (17b)

C %2, j
l = ( j−1)2, C %nr−1, j

l = (−1)j( j−1)2, j=1, . . . , nr. (17c)

This practice wastes collocation points and integrating factor techniques are not readily
implemented. An alternative uses a variant of Green’s function or influence matrix method [1].
Explicit formulas will be given for an implicit Euler step, the extension to Crank–Nicolson is
again straightforward.

The principle of the method is best introduced in terms of continuous functions. During
initialization, discrete approximations are computed for the functions f1,l(r), f2,l(r), g1,l(r, t),
g2,l(r, t), which are solutions of

Dlf1,l=0, f1,l(ri)=1, f1,l(ro)=0, (18a)

Dlf2,l=0, f2,l(ri)=0, f2,l(ro)=1, (18b)

(

(t
gj,l−EDlgj,l= fj,l, gj,l(ri, t)=gj,l(ro, t)=0, gj,l(r, t=0)=0, j=1, 2. (18c)

At every single time step, the following equations are solved for f0,l
m and g0,l

m :

Dlf0,l
m =

r
l(l+1)

[r̂ ·9×9×{V %×u}]lm, f0,l
m (ri)= f0,l

m (ro)=0, (19a)

(

(t
g0,l

m −EDlg0,l
m = f0,l

m , g0,l
m (ri, t)=g0,l

m (ro, t)=0, g0,l
m (r, tn)=Vl

m(r, tn), (19b)

where tn is the time at the beginning of the current time step. The poloidal field is finally
updated by:

Vl
m(r, tn+1)=g0,l

m (r, tn+h)+a1,l
m g1,l

m (r, h)+a2,l
m g2,l

m (r, h). (20)

Vl
m is zero by construction at the boundaries and the coefficients a1,l

m and a2,l
m are uniquely

determined by the second boundary condition on Vl
m.

In order to discretize the method two sets of matrices, P l and M l, are necessary. In
connection with the Poisson inversions ((18a), (18b) and (19a)) we need P l such that for
arbitrary f(r) and its Chebychev coefficients f0 j with f(rn)=�j=1

nr f0 jTj−1(xn), n=1, . . . , nr, the
following property holds:
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%
nr

j=1

Pn, j
l f(rj)= %

nr

j=1

f0 jDlTj−1(xn), n=2, . . . , nr−1, P1, j
l =d1, j, Pnr, j

l =dnr, j,

j=1, . . . , nr, l=1, . . . , L. (21)

For the actual time step we need in analogy with (14), matrices M l with the property

%
nr

j=1

Mn, j
l f0 j= %

nr

j=1

f0 j [Tj−1(xn)−hEDlTj−1(xn)], n=2, . . . , nr−1, M1, j
l =1,

Mnr, j
l = (−1)j−1, j=1, . . . , nr, l=1, . . . , L, (22)

for any f0 j.
The discrete analogs of (18a) and (18b) are now:

P l( f1,l(r1), . . . , f1,l(rnr
))T= (0, . . . , 0, 1)T, (23a)

P l( f2,l(r1), . . . , f2,l(rnr
))T= (1, 0, . . . , 0)T. (23b)

(18c) becomes

M l(g̃j,l,1, . . . , g̃j,l,nr
)T= (0, fj,l(r2), . . . , fj,l(rnr−1), 0)T, j=1, 2, (24)

where a tilde again denotes Chebychev coefficients. The extension to (19a) and (19b) as well
as to the Crank–Nicolson step is obvious.

It will now be argued that Crank–Nicolson (CN) can be a dangerous method in some
circumstances. There is the well-known fact that the implicit Euler step ‘damps small scales
better’ than CN. CN does not necessarily preserve the hierarchy of damping rates, which is
disturbing for very stiff equations. In particular, when looking for the most slowly decaying
mode of a system, CN may pick the wrong one. As a simple example, consider the model
equation

d
dt

y(t)=ly(t) (25)

for y(t) with the growth rate l. The value of y at two instants separated by the time lapse h
is exactly determined by yn+1=jyn=elh yn. If (25) is discretized with CN and implicit Euler
steps of step size h, one obtains respectively jCN and jE for the ratio of y at two successive time
steps:

jCN=
1+lh/2
1−lh/2

, (26a)

jE=
1

1−lh
. (26b)

Figure 1 compares these damping rates. It is seen that for lh= −2, CN sets y to zero after
just one time step. For lhB−2, the sign of y alternates between successive time steps and the
absolute value of y decays more slowly for a larger �l �! In this parameter range, the implicit
Euler step, though first-order, is closer to the exact solution than CN. Transposed to a stiff
system of equations, this means that very rapidly decaying modes are more accurately
reproduced by the implicit Euler step than by CN.

As a simple application to the spherical code, let us consider the solutions c(r, t) of the
equation

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 713–724 (1999)
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Figure 1. Ratio j of the solution of (25) at two successive time steps separated by the time h if (25) is integrated with
the implicit Euler (dashed) or the Crank–Nicolson (dot dashed) method. The solid line shows the exact value of j.

(

(t
c(r, t)−

� (2

(r2+
4
r
(

(r
+

2− l(l+1)
r2

�
c(r, t)=0, c(ri, t)=c(ro, t)=0, (27)

which corresponds to the diffusive part of (6b). c should converge to a toroidal decay mode
if (27) is integrated for long enough starting from arbitrary initial conditions. Figure 2 shows
c for l=1 and ri/ro=0.35 at t=1 obtained with a resolution of nr=65 and different time
stepping methods starting from c(r, 0)=sin p(r−ri). The time step was h=0.01, whereas the
decay time of the relevant decay mode is 0.084. The integrating factor technique to be
discussed below yields an exact temporal discretization of (27). It is seen that CN approximates
well the desired solution throughout most of the computational interval but develops unphys-
ical oscillations near the boundaries. The implicit Euler step is overall less accurate but at least
qualitatively correct (as concerns the number of nodes of the solution, for instance). Upon
decreasing h, the oscillations in the CN solution gradually disappear and the implicit Euler
solution becomes more accurate.

In the light of the discussion connected with (25), the oscillations are interpreted as being
due to an eigenmode of (27), which does not decay fast enough in the CN scheme. The CN
step is, therefore, to be used with caution in problems dealing with a system of modes with
widely varying decay rates. Highly oscillatory modes that are insufficiently damped may of
course also lead to instabilities if non-linear terms are included.

Figure 2. Solution c of (27) for the parameters given in the text obtained with the implicit Euler (dashed),
Crank–Nicolson (dot dashed) and integrating factor (solid) techniques.
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We are thus motivated to search for a method that integrates the diffusive part exactly in
order to obtain accurate damping rates. A suitable integrating factor technique will now be
presented. Let us once again consider the toroidal problem first:

(

(t
Wl

m+LlWl
m=Fl

m(r, t), Wl
m(ri)=Wl

m(ro)=0, (28)

where

Ll=E
� (2

(r2+
4
r
(

(r
+

2− l(l+1)
r2

�
and Fl

m(r, t) stands for the right-hand-side of (6b). The indices l and m are unnecessary in the
following and will be omitted. Equation (28) can be formally rewritten as ((eLtW)/(t=eLtF.
Because W is always zero at the boundaries, the action of L at the nr−2 interior collocation
points can be described by the (nr−2)2 matrix L in a manner analogous to (21):

%
nr−1

j=2

Ln, j
l f(rj)= %

nr

j=1

f0 jLTj−1(xn), n=2, . . . , nr−1 (29)

for arbitrary functions f. Integrating the spatially discretized dynamic equations from time tn

to tn+1= tn+h yields

exp(Ltn+1)vn+1−exp(Ltn)vn=
& tn+1

tn

exp(Lt %)F(t %) dt %, (30)

where the (nr−2)-dimensional vectors containing the values of the toroidal scalar and F at the
interior collocation points at time tn are denoted by vn and F(tn) respectively. The exponentials
can be computed after diagonalization of L :

exp(Lt)=T exp(T−1LTt)T−1, (31)

where T−1LT is diagonal and T contains the eigenvectors of L in its columns. Sturm–Liouville
theory tells us that the eigenfunctions of L form a complete set of functions. It is not
guaranteed that this property transposes to L, the Chebychev discretization of L. Numerical
tests in double precision arithmetic have shown however that T−1T differs from the identity
matrix by no more than 10−16 in each element for 632 matrices when T is computed with QR
and T−1 is obtained after LU decomposition, indicating that T is well-conditioned.

The integral on the right-hand-side of (30) is now approximated by discretizing F according
to the second order Adams–Bashforth scheme:& tn+1

tn

exp(Lt %)F(t %) dt %:
& tn+1

tn

exp(Lt %) dt %
h
2

[3F(tn)−F(tn−1)]

= (exp(Ltn+1)−exp(Ltn))L
h
2

[3F(tn)−F(tn−1)], (32)

where L=T diag{li}T−1 and li are the eigenvalues of L. The updated toroidal scalar is
finally given by:

vn+1=exp(−Lh)(vn−F0 )+F0 ; F=L
h
2

[3F(tn)−F(tn−1)]. (33)

Two matrix multiplications are thus required, involving the matrices L and exp(−Lh),
which can be precomputed during initialization. Two cosine transforms are necessary when
computing the radial derivatives for the next time step.
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Table II. The kinetic energy Ekin computed for ri/ro=0.35, a=23.5°, V=
−10−3, E=10−4 at a resolution of nr=65, L=64 with 12 longitudinal grid
points, time step h and three different methods: implicit Euler step using four
collocation points to enforce the boundary conditions on the poloidal field
(IE4), implicit Euler step using the Green’s function method for the poloidal

field (IEG), and the integrating factor method (IF)a

Method h Ekin×103

0.1IE4 3.286
IEG 0.1 3.285
IF 0.1 3.256

3.45025IE4 0.03
3.450270.03IEG

0.03 3.4514IF
3.45983IE4 0.01
3.460290.01IF

a Non-linear and Coriolis terms were treated with second-order Adams–Bashforth and
the precessional forcing term with Crank–Nicolson. The non-linear products were
dealiased with the 3/2 rule in the azimuthal direction. The simulations were started from
rest and integrated until time t=900. IF with h=0.01 is expected to yield the most
accurate result.

No essential changes are necessary to apply the integrating factor technique to the poloidal
equation if the influence matrix method is used. In this case, time steps occur only in (18c) and
(19b) with boundary conditions that the solution be zero at the boundaries. The above
formulas can thus directly be used. It is, however, considerably more involved to design an
efficient integrating factor technique for the poloidal field if one insists on imposing the
boundary conditions by sacrificing a total of four collocation points. One reason is that the
remaining dynamic equations are not any more described by a square matrix one could
formally exponentiate.

With the implementations used by the author, the CPU time requirements for (i) a CN (or
implicit Euler) method using four collocation points to enforce the boundary conditions for the
poloidal field, (ii) a CN step using the influence matrix method, and (iii) the integrating factor
technique stand in the ratio 1:1.23:1.37 for nr=65, L=64.

4. CONCLUSION

Several time stepping methods have been presented in this paper for the integration of the
incompressible Navier–Stokes equation in a spherical shell. Examples of numerical results for
different problems obtained at various stages of development of the code can be found in the
literature [7–10]. The Crank–Nicolson step has been applied successfully in many cases despite
its shortcomings. The implicit Euler step may procure higher ‘fidelity’ by yielding qualitatively
correct answers as in the above example of the decaying flow. This time step is, however, only
first-order in time and the integrating factor technique is preferred for accurate computations.

Precession driven flows are a case in point. One way to look at precessional flows is to think
of the flow field as a sum of inertial modes (which exist in the purely rotating container)
excited by precession. Modes in resonance with precessional forcing acquire the largest
amplitude. These are mainly an m=1 mode (the ‘spin-over’ mode) so that an accurate spectral
computation gets away with only a few azimuthal modes corresponding to few grid points in
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longitude. On the other hand, it is important to make sure that some modes do not accumulate
an unrealistic amount of energy as could happen with the Crank–Nicolson step. A mode by
mode comparison of the amplitudes obtained with different time marching methods is thus
recommendable.

At large E, diffusion dominates and the Crank–Nicolson step is indeed an unacceptable
method; the same phenomenon is observed as in the decay problem (27). At small E, the
primary balance of forces does not involve diffusion, and the choice of the implicit time step
becomes less and less important. Even the fact that the implicit Euler step is only first-order
becomes irrelevant. The limit imposed on the time step by the CFL condition becomes small
compared with the diffusion time scale so that diffusion is accurately treated and computa-
tional precision is limited by the explicit part of the time step. Table II gives a specific
numerical example. A further distinction is whether Green’s functions are used or not. These
are definitely useful to formulate the integrating factor technique but do not provide a clear
advantage for the other methods.

In summary, the integrating factor technique is the most universal and can be used in all
cases, but simpler and somewhat faster executing methods may suffice in flows in which
viscous forces are overwhelmed by other forces.
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